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Abstract—Biosignal-based finger force estimation is an active
area of research, with applications in teleoperation, human-
machine interaction, and rehabilitation robotics. Traditionally,
surface electromyography has been used to estimate hand grip
and finger forces. In this paper, we show that forearm ultrasound
can be used to estimate the force exerted by the fingers. A wireless
ultrasound probe strapped to the forearm and a force sensor was
used to estimate the ground truth. Accuracy percentages and root
mean square error (RMSE) values were obtained for the shuffled
and non-shuffled data subjected to a test-train split for all the
fingers. It was found that the classification accuracy was 98.4
percent for the shuffled data, and 82 percent for the non-shuffled
data averaged over all the fingers. For continuous estimation, the
average RMSE was 0.02 N for the shuffled data and 0.2 N for
the non-shuffled data. With a maximum force of 5 N, the average
RMSE accounted for 4 percent of the maximum force for the
non-shuffled data, and 0.4 percent for the shuffled data. These
results show the potential of utilizing forearm ultrasound for
estimating finger forces.

Index Terms—Forearm ultrasound, sonomyography, force,
robotics, teleoperation, human-machine interfacing

I. INTRODUCTION

For effective human-machine interfacing, intuitiveness and
comprehensive tracking of hand dynamics is pivotal. This is
particularly true for estimating finger movements and exerted
forces. Biosignal-based hand movement and force estimation
is an ongoing area of research and finds several applications in
robot teleoperation, human-machine interaction, and rehabili-
tation robotics. Typically, surface electromyography (sEMG)
has been used for estimating forces based on the electric
signals coming from the brain to the hand through the forearm
muscles [1]. However, there are issues surrounding the sensor
signal-to-noise ratio, number of sensors required to get good
data, etc. [2]. Ultrasound data from the forearm has been a
useful modality for estimating hand movements and isometric
force because it provides a visualization of a cross-section
of the forearm. Previous works have shown ultrasound being
used to measure finger movements [3], [4]. Using forearm
ultrasound to measure isometric grasp force has also been
demonstrated [5].

Merely isometric grasp force estimation is not sufficient,
and it’s important to get finer force measurement per finger to
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get force feedback for effective human-machine interfacing.
Ultrasound data from the forearm gives us rich information
about muscle morphology changes based on the force applied
by each finger. These changes can be used to train machine
learning models to estimate forces. The goal of this work is to
estimate the force applied by different fingers. Two types of
estimations are done: a) Binary classification between appli-
cation of force and no application of force, and b) Continuous
estimation of the force for different fingers. Machine Learning
models are trained for different fingers for these estimations
and the results are presented using accuracy percentage for
classification and root mean square error (RMSE) for contin-
uous estimation. The successive sections describe the methods
employed and the results obtained for the study.

II. METHODS

After the ultrasound data and the corresponding ground
truth are acquired, the data is processed and machine learning
models are trained to estimate their performance to estimate
forces using forearm ultrasound images. The overall workflow
and different system components are depicted in figure 1.

A. System components

Ultrasound data was acquired using a Sonoque wireless
linear ultrasound probe which was encased in a custom-
designed wearable armband. The data from the probe was
continuously streamed onto a computer screen, and this data
along with the corresponding ground truth was acquired using
a custom-designed Python script. A FlexiForce force sensor
was used to acquire the finger force data. An Arduino was used
to interface the force sensor to the data acquisition pipeline
set on a Desktop. This sensor was calibrated using weights
ranging from 10 grams to 500 grams. A quadratic fit function
was used to calibrate the sensor. This is defined in equation
1.

weight = a ∗ reading2 + b ∗ reading (1)

where, weight is the weight in Newtons (N), and reading is
the raw data acquired from the sensor. The values of a and b
were found experimentally to be 1e−5 and 2.5e−5 respectively.
The final function is shown in 2.

weight = 1e−5 ∗ reading2 + 2.5e−5 ∗ reading (2)



Fig. 1. System components and workflow: (a) The data acquisition block, (b) The classification block, (c) The continuous estimation block.

Fig. 2. Force sensor calibration using a quadratic fit function

The calibration curve is shown in figure 2.

B. Data acquisition

1000 ultrasound frames and the corresponding force data
were acquired for each finger. The streamed data was saved
at a frame rate of ∼4 Hz. The ultrasound image size was
640 x 640 pixels. The data acquisition was run three times.
For classification, forces below 0.25 N were class 0, and
the rest were class 1. The data was split into training and
testing sets before and after shuffling with a split of 20%.

The introduction of shuffled and non-shuffled datasets aimed
to discern the impact of temporal dynamics on force estima-
tion efficacy. Specifically, the shuffled dataset encompassed
training and testing sets with temporal dependencies, while
the non-shuffled counterpart featured temporally independent
training and testing sets.

C. Model and metrics

A linear support vector classifier was used. It was a de-
liberate choice, given its established utility in prior research
for hand gesture classification based on forearm ultrasound
data [6]. Classification accuracy served as the benchmark for
evaluating classification performance, while continuous force
estimation was evaluated using the root mean square error
(RMSE). The classification accuracy percentage is defined in
equation 3.

Acc =
CC

TC
∗ 100 (3)

where, Acc is the classification accuracy percentage, CC is
the number of correct classifications and TC is the number of
total classifications. The RMSE is defined in equation 4.

Err =

√∑N
i=1(xi − x̂i)2

N
(4)

where, Err is the root mean square error, xi is the actual
value and x̂i is the predicted value of the ith observation. N
is the total number of observations.



Fig. 3. Classification accuracy for the hand digits

III. RESULTS

The results for binary force classification and continuous
estimation of force for different fingers are described in this
section.

A. Classification accuracy

Accuracy percentage values were obtained for the shuffled
and no-shuffled cases for all the fingers. It was found that
the average classification accuracy was 98.4 ± 0.5% for
the shuffled case, 82 ± 20.54% for the non-shuffled case.
The classification accuracy results are shown in figure 3.
Shuffled data in general had a higher performance than non-
shuffled data. The standard deviation for non-shuffled data was
higher. This divergence could be attributed to the temporal
dependencies present in the training and testing sets of the
shuffled data. Notably, the accuracy percentage for the non-
shuffled scenario remained within a 25% range of the shuffled
counterpart, except for the middle finger classification, which
fell below 50% of the shuffled accuracy. Future work will be
directed toward enhancing the accuracy of non-shuffled results,
particularly for both index and middle fingers.

B. RMSE for continuous estimation

For continuous estimation, averaging the results over all the
fingers and considering the maximum applied force of 5 N, the
average RMSE was 0.02 ± 0.01 N for shuffled data and 0.20
± 0.13 N for non-shuffled data. The RMSE values for each
finger are shown in figure 4. As was observed for classification,
time dependence in the test and train sets for the shuffled data
leads to lesser error compared to the non-shuffled set. For the
non-shuffled set, just like it was observed for classification,
continuous force estimation for the middle finger performed
the worst with a RMSE value greater than 0.4 N. For the worst
case based on the standard deviation, for the shuffled data,
the error was 0.03 N which is 0.6 % of the maximum value.
For the non-shuffle data, this was 0.33 N which is 6.6 % of
the maximum value. These results are encouraging, and future

Fig. 4. Root mean square error for the hand digits

work will focus on improving the no-shuffle time-independent
analysis results using deep learning algorithms.

IV. CONCLUSIONS

In conclusion, this study demonstrates the use of forearm
ultrasound for estimating both binary and continuous finger
forces. A wearable ultrasound probe and a force sensor were
used to acquire data. Using a linear support vector classifier,
an average classification accuracy of 98.4% for shuffled data
and 82% for non-shuffled data was obtained, For continuous
estimation, an average RMSE value of 0.02 N for shuffled
data and 0.2 N for non-shuffled data were obtained. These
findings offer encouraging prospects for future research for
using forearm ultrasound for finger force estimation. The
non-invasive and data-intensive nature of ultrasound makes it
a sensor of choice for human-machine interfacing, and this
study contributes to the gradual advancement of biosignal-
based non-invasive finger force estimation methods and their
potential applications.
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