
Towards The Development of a Low-Latency, Biosignal-Controlled
Human-Machine Interaction System

Keshav Bimbraw1, Member, IEEE, Mingde Zheng2, Member, IEEE

Abstract— With the rise of 5G, IoT, and cybernetic con-
nectivity, the role of human intervention in the digital and
physical manipulation of objects, factory automation, and
manufacturing has become increasingly critical in meeting
unprecedented quality standards. As a result, a reliable Human-
centered system construct for enabling seamless and accurate
control is urgently needed to interlink human intents with
remote targets. In this paper, we report the development of
a universal system pipeline, highlighting key enabling modules,
and both physical and bioelectrical sensors as input modalities
to demonstrate a near-natural motion synchronization between
a human and a robotic arm. This effort was exemplified by
the formulation of a method to reduce modular and system-
level operational latency to achieve congruent human-machine
interaction (HMI) through analyzing and simulating common
mechanical motions. Furthermore, we explored several efficient
machine learning (ML) model that reliably works with a
variety of time-series-based biosignals reflective of intents, thus
allowing a diversity of sensors to contribute as the system
inputs. We believe our system pipeline represents a first step
in unveiling otherwise hidden components within Biosignal-
Controlled HMI systems and meeting the key challenges will
bring us closer to the establishment of a natural, human-intent
controlled, remotely operated HMI platform, with applications
that extend far beyond major sectors of academia and industry.

I. INTRODUCTION

Advances in the Internet of Things (IoT), cybernetic and
wireless connectivity have led to a rapid increase in digital,
physical, and Augmented/Virtual Reality (AR/VR) systems.
To effectively interact with them in a rapidly advancing tech-
nology landscape, it is vital to develop effective and robust
human-machine interaction strategies [1]. Human-machine
interaction (HMI) is the design, implementation, and use of
technologies to enable humans to interact seamlessly with
digital/physical/AR/VR systems. However, as they continue
to advance and diversify, their required level of control and
manipulation needs have increased drastically. To keep up,
we require a new paradigm shift in interfacing with these
application domains. And our body provides a natural and
flexible means to do so. As an example, two common HMI
systems that we use daily are the PC mouse and keyboard.
Heralded once as breakthroughs of their days, they have
now established themselves as resilient physical interfaces
that are difficult to replace and upgrade from. A success-
ful replacement with proper intent-extraction sensors could
crown our superior dexterous hands as the ultimate control

1Keshav Bimbraw is with Nokia Bell Labs, New Providence, NJ 07974
USA (Phone: 678-436-9426). keshav.bimbraw@nokia.com

2Mingde Zheng is with Nokia Bell Labs, New Providence, NJ 07974,
USA. mingde.zheng@nokia-bell-labs.com

that translates thoughts to commands, effectively being the
robust, reliable, and natural physical interface that lets us
manipulate any external applications with utmost freedom
and range.

Biosignal-controlled HMI is a rapidly rising new field
of research where different sectors (commercial, industrial,
military, academia, clinical, etc.) have realized the impor-
tance and critical challenges of placing human at the center
of their product development processes. This is due to the
inference of human intent using the singular or a combination
of biosensing modalities. These sensors (ideally non-invasive
in nature) ascertain the user’s thoughts indirectly and make
inferences based on intelligently designed algorithms and
machine learning (ML) to translate a thought into a digital
command for external control. This is a highly promising
area of opportunity for a variety of different applications
[2]. Therefore, billions of dollars are being funneled into
Biosignal-based HMI research and relevant product devel-
opment. Input modality flexibility is one of the attractive
attributes of its popularity. The input sensors can be based
on electrical [2], acoustic [3, 4], optical [5], mechanical [6],
biological [7], or physiological [8] changes in the human
body to infer the intent, thus facilitating the establishment
of a non-verbal-driven HMI. Some examples include haptic
technologies such as Meta’s AR/VR interfacing prototype
[9]; consumer gadgets such as the hand motion detection
system in automobiles [10]; surgical robots such as the
Davinci Robot as popularly seen in surgical robotic teleop-
eration [11]; robots for explosive detection and related crisis
and military operations [12]; assistive robotic systems in
rehabilitation [13, 14] and an extensive and unsorted range of
academic research and development devices spanning over a
multitude of areas from flying drones via human arm control
[15] and beyond. In general, Biosignal-controlled HMI can
be classified into four broad categories: a) biopotentials, b)
muscle mechanical motion, c) body motion, and d) hybrid
signals [16]. Biopotential-driven HMI systems are the most
popular amongst them all, thanks to the well-researched
surface electromyography (sEMG) sensor in which the sig-
nals reflect the myoelectric potential changes and have been
extensively used for gestural detection. It is one of the most
promising modalities for establishing a natural and intuitive
Biosignal-controlled HMI system.

In terms of system operability, these can be divided
into two types of systems: dedicated commercial systems
and generic experimental systems. Dedicated commercial
systems such as Meta’s AR/VR hand glove are highly
optimized in terms of latency and have a fixed setup. The



Fig. 1. Biosignal-Controlled HMI system pipeline with key modules and processes in their color-labeled operating platform.

latency in these types of systems usually falls in a range
of 100 – 300 ms which makes them suitable for real-time
operation. However, these systems are generally expensive,
sophisticated, and very specialized. Generic experimental
systems such as acoustic signal-based prosthetics and drones
are relatively more flexible and are not standardized [3].
The latency of such systems is usually arbitrary and can
be greater than 500 ms, making them non-ideal for real-time
HMI applications.

Several sEMG-based robotic arm control systems have
been developed. Artemiadis, et al. described a system for
continuous control of a robotic arm using sEMG signals
from the upper limb with a primary focus on the accuracy
of estimation of 2-D embeddings based on arm motion in 3-
D cartesian space [17]. Cheng, et al. combined sEMG with
electroencephalography (EEG) to control a robotic arm with
time windows of 2000 ms [18]. Machine learning (ML) and
deep learning (DL) based approaches have also been used
to estimate hand and wrist movements using sEMG with the
primary focus on achieving a high classification accuracy
[19, 20, 21]. Dwivedi, et al. combined sEMG with a fiducial
marker for a robotic hand control reporting accuracy and
algorithmic latency results for telemanipulation [22]. Chen,
et al. described a pipeline for controlling a Baxter robot
using sEMG [23]. While in the literature, numerous generic
sEMG (or a combination of sEMG with other modalities)
controlled HMI have been proposed, the focus has primarily
been on improving accuracy for gesture classification, or not
focusing on overall pipeline latency from start to end for
the deployment of such biosignal HMI. Optimizing these
generic HMI systems has been challenging due to a lack
of guidelines, standardizations, and protocols. Additionally,
operational latency has traditionally been viewed as a single

systemic issue rather than a series of multi-modular issues
that spans all modules of any generic HMI system.

To address this challenge, we present a generalizable struc-
tured pipeline with a system-wide latency reduction construct
to improve overall system performance. We formulated this
construct to examine each module for optimization such
as the Data Processing and the Remote Data Transmission
module, to demonstrate how low latency must be maintained
at the modular and systemic levels. Different data processing
techniques were carefully analyzed and selected to work
with multi-channel and multi-input sensor modalities with
continuous, and real-time signals reflecting live user intent.

In this work, we report the remote and seamless actuation
of simple movements of a robotic arm controlled by a
human arm using two wireless sensor attachments operating
continuously in real-time. Section 2 outlines the methods for
system pipeline construction, operational latency construct
design, and intent extraction. Section 3 discusses the outcome
and performance of the completed end-2-end HMI system,
ML with latency performance, and demonstration of the
system.

II. METHODS

The proposed system pipeline consisted of several key
modules based on the author’s analysis of other Biosignal-
Controlled HMI systems (Fig.1). And unlike other platforms,
we generalized them as sub-modules according to their
key functions and optimized each module specifically for
latency. These included sensor blocks that control all input
modalities, and other modules listed as modules for data
acquisition, processing, and transfer, user-intent detection via
gestural powered ML within the processing module, and end-
system interfacing operation module.



A. System Overview

The following section is partitioned according to Fig.1
shown above. Starting with input data from the left-hand side,
various sensing modalities are possible. In our experiment,
the positional and bioelectrical signals for a predefined time
window were acquired from the forearm. These signals were
then conditioned using digital signal processing (DSP) and
machine learning (ML) based techniques. The processed
signals were converted to a low-memory format for low-
latency data transfer to the operating system (OS) which
controlled the hardware.

1) Data Acquisition: The user intent extraction sensor
used for the pipeline development is a multi-channel my-
oelectric sensor popularly used for hand gestural recog-
nition, and it is known as the Surface electromyography
(sEMG) sensor. An inertial measurement unit (IMU) sensor
is employed in parallel, taking in both acceleration and
orientation information. Collectively, they are embedded in a
wearable sleeve format for easy mounting. All programming
was implemented in Python. An 8-channel sEMG sensor
was employed in our case with a bit-resolution of 16, an
amplification factor of 1000, and a sampling frequency of
2000 Hz. The signals were live streamed in multiple channels
of the same rate under a timing window between 50 to 500
ms.

2) Data Processing: Following a fixed time window
within the system, all acquired input data were conditioned to
suppress noises and enhance signal quality (i.e., SNR). The
IMU had a positive offset to rectify all the incoming values.
The data were then scaled by an arbitrary factor based to be
sent as positional commands to the end-system application
interface. Myoelectric data were bandpass filtered to lower
incoming noises. Following this, two primary methods were
explored for extracting intent-specific user motion from the
sensors.

a) Signal Thresholding: For rest and motion identifi-
cation, there were changes in signal intensity which can be
extracted from time and frequency domain features derived
from the time windows. Instead of relying solely on time
domain intensities for identification, frequency domain rep-
resentation of the signal was more stable. To this end, the
power spectrum density (Equation 1) of the signal using a
periodogram was acquired for each time window.

S

(
k

NT

)
=

∣∣∣∣∣∑
n

x
N
[n] · e−i2π kn

N

∣∣∣∣∣
2

(1)

where the S is the periodogram for all integers k between 0
and N − 1 for a parameter T . x

N
is a periodic summation

defined in equation 2.

x
N
[n] ≜

∞∑
m=−∞

x[n−mN ] (2)

b) Machine Learning based approach: Numerous ML
and DL-based algorithms have been shown in the literature
to classify sEMG data. Five different algorithms commonly
employed were chosen to build and evaluate our classifiers,

Fig. 2. Different hardware components of the system: (a) Sensors in a
custom design armband, (b) The data acquisition system iWorx RA 834, (c)
Windows 10 with Python running in PyCharm, (d) Linux Ubuntu 20.04, (e)
ROS1 Noetic with RViz real-time robotic simulation, and (f) Pincher X-100
Robotic Arm.

namely: AdaBoost-SAMME, nearest neighbor (NNC), linear
support vector (L-SVM), gaussian process (GPC), and a
multi-layer perceptron neural network (NN).

3) Data Transmission: The data obtained from the IMU
and the sEMG sensor were combined and subsequently
converted into a low-memory data conversion format. The
converted data was transferred wirelessly to the operating
system containing the robot operating system (ROS) set up
for controlling the robotic system.

4) End-System Interfacing: After the low-memory data
containing relevant sensor-based movement commands were
acquired in the operating system containing the operating
system for the end-system interface, it was first converted to
a format that was understandable by the interface. For this
work, a robotic arm was used as the end-system interfacing
application and ROS served as a robotics middleware due
to its popularity in the robotics community, low-level device
control, and defined message passing between different pro-
cesses of robot motion. The data received in the system was
used to control the robot’s position and orientation. This was
done by passing the control commands to the joints of the
robotic system through ROS nodes. The data sent through
the ROS nodes sets the joint parameters of the simulated
robotic arm as well as the physical robotic arm.

B. Operational Latency Construct Design
Operational latency is a key challenge that spans all mod-

ules in the system pipeline. This is due to the existence of
independent and co-dependent processes within each module,
therefore regardless of the central processing speed of any
OS that the system pipeline was established in, the challenge
of targeted low latency hinders the overall performance of the
pipeline. We have devised an ingenious solution to resolve
this challenging issue.



Fig. 3. Operational latency results. (a) Latency for data conversion to low-memory format for transfer. (b) Latency for simulation and hardware systems
for time windows of lengths 1 ms, 10 ms, 50 ms, etc. (c) For a 50 ms time window, it takes 150 ms for simulated robot control and over 200 ms for
physical robot control.

1) Selection of Time Window Size: To acquire IMU and
sEMG data, the duration of the time window needed to be
optimally chosen. While the positional data from the IMU
can give relevant information based on small window sizes
of about 10 - 20 ms, the sEMG window size had to be
larger to extract the necessary information from the data set.
Window sizes from 100 ms - 1000 ms have been reported
in the literature [2]. Selection of the right window size was
important because increasing it increased the time across all
the successive modules of the pipeline. To build a system
that operated with the end-system interfacing application
seamlessly, it was important to keep the latency of the
pipeline less than 300 ms [2]. A window size of 50 ms was
hence chosen for the signal thresholding-based method for
robot control, and a window size of 500 ms was chosen
for the ML-based approach. The prior provided a simplistic
approach that one can quickly deploy whereas the latter
provides the means for more sophisticated applications.

2) Conversion to a Low-Memory Format: After the rele-
vant data was obtained from both IMU and sEMG sensors,
they were concatenated in the form of a list object with two
arbitrary values. They were then scaled between 0 and 255
so they could be converted into a single unsigned byte. This
was necessary for converting the data from a high-to-low-
level fundamental data unit. This low-memory occupancy
compared to other data types makes it ideal for real-time
data transfer. Following this conversion, the byte array was
sent over the user diagram protocol (UDP) to the end-
system interfacing application environment containing the
robot control operation established through ROS. During a
function call for the data, it was then first converted back to
a list object with two values in a higher-level format, suitable
for conversion to the values interpretable by the end-system
interfacing application, which, in our case, is the robotic arm.

3) Wireless Data Transfer: There are several options us-
ing which data can be transferred wirelessly, with a heavy re-
liance on Wi-Fi-based data transfer approaches. The primary

transport-layer protocols for it are UDP and transmission
control protocol (TCP). UDP provided an uninterruptible
datagram connection between systems and applications. For
TCP, a connection is established before the data transmission
begins. UDP was chosen for our application due to the
speed of transfer, and continuous streaming of data which
makes it ideal for real-time teleoperation for robotic systems.
The analysis of the UDP packet loss has been thoroughly
discussed in Section III.A.

C. Data Processing and Intent Extraction

The IMU data was filtered using a band-pass filter with the
low-pass frequency set to 0.5 Hz and the high-pass frequency
set to 30 Hz. The ML sub-module of the system pipeline
took in pristine sEMG data from the previous DSP module,
where the sEMG data windows were filtered using a band-
pass filter with the low-pass frequency set to 10 Hz and the
high-pass frequency set to 10 kHz. After the filtered data
was acquired, features were extracted from the sEMG time
windows, and machine learning based algorithms were used
to train and evaluate models for classifying hand movement.

1) Feature Extraction: For extracting meaningful infor-
mation, 14 different features were chosen for the analysis.
These features were acquired for each time window. Of
these, 12 were time-domain features and 2 were frequency-
domain features, which are the signal’s total and mean
power. The time domain features chosen were zero crossing,
waveform length, mean absolute value, root mean square, V-
order (orders = 1, 2, 4, and 8), slope sign change, Willison
amplitude, variance, and simple square integral. The time and
frequency domain features were combined and normalized
across each feature. They were then used as an input vectors
to the machine learning algorithms.

2) Machine Learning: The data for the hand motions (rest
and motion states) was acquired in a supervised learning
paradigm with the time windows being labeled automatically
as time progressed. Scikit-learn library was used to train and



Fig. 4. Machine Learning algorithm comparison in terms of (a) Training time, (b) Inference time, and (c) Accuracy percentage.

evaluate the models in Python [24]. Five different algorithms
were analyzed and selected for comparison in our operation:
AB, k-NN, L-SVM, GP, and NN-MLP. In terms of model
training and evaluation, a total of 12.5 minutes of total data
was acquired over 5 trials of 300 at 500 ms, given a total of
150000 ms or 2.5 minutes each. In each trial, there were 500
ms of successive rest and motion states. 6 seconds of data
at the start of every file is discarded. The subject had their
arm straight up and they were sitting on a chair with their
feet firmly on the ground. A total of 12 minutes of 4-channel
sEMG data was used to evaluate the systems, with a 75%
train-test split leading to 9 minutes as the training set and 3
minutes as the test set.

D. Hardware Interfacing

Fig. 2 shows the different physical components of the
system. For signal acquisition, iWorx RA 834 biosignal
research workstation was employed [25]. A multi-channel
iWire-BIO8 external module was used for sEMG signal
amplification, and an iWire-IMSx was used for IMU signal
conditioning. The sensors were attached to the forearm using
a wearable sleeve. PincherX-100 research-grade robot arm
was used as the end-system interfacing [26]. As part of
the Interbotix X-series, it uses dynamixel X-series smart
servo motors. Two different operating systems were used, a
Windows 10 system and an Ubuntu Linux 20.04 system. The
robot operation was implemented using Interbotix’s robot
control API and it runs on ROS1 Noetic.

III. RESULTS & DISCUSSION

The establishment of a universal system pipeline for
Biosignal-controlled HMI was to enable transparent devel-
opment and standardization of methods so a reliable robotic
system under flexible human control. There are numerous
technical challenges depending on the end-system interfacing
applications, however, we believe many key challenges arise
from common modules shared by all these systems. As

an outstanding demonstration shown here, we identified
operational latency as the primary obstacle across several
key co-dependent modules.

A. Operational Latency Reduction Outcome

In the system pipeline shown in Fig. 1, there were several
components that led to time lags. The latencies in these
components were optimized by (a) Intelligently splitting the
operating systems, (b) Selecting the right window size, (c)
Choosing a memory-efficient route of data compression and
transfer, and (d) Using a low-latency data transfer protocol
for a natural, real-time operation.

Fig. 3(a) shows the latency for an increasing number of
channels for data conversion to bytes. For an increasing
number of channels from 1 to 11, the latency increased from
1 ms to 3 ms. Thus, the low-memory data conversion does
not take more than 3 ms even for 11-channel data, thereby
making it suitable for data compression in wireless transfer.
For wireless transfer with UDP, there were issues with data
packet loss, but because of low-latency transfer, it was the
preferred choice. Based on experiments with a small number
of data samples (102 - 104 samples of low memory byte
arrays), it was found that 70% of data is received, with a
30% packet loss. For a larger number of data samples (greater
than 106 samples of low memory byte arrays), 90% of data
is received with a 10% packet loss. To reduce the data loss
even further, a small wait time (1 ms) was added between
successive samples for data transfer. This improved the data
transfer significantly with over 99% of data received for
both small and large data samples. This communication was
established over Wi-Fi with an average speed of 1000 Mbps.
With other Wi-Fi speeds, the results might be different.

Fig. 3(b) shows the system latency for robot simulation
and hardware control under real-time teleoperation. It was
found that system pipeline latency increased linearly with the
size of the data acquisition time window. It takes more time
for the hardware to respond because of the robot’s physical



Fig. 5. Figure for demonstration: (a) Data flow chart for demonstration with the color legends at the bottom, (b) IMU-based joint angle control, and (c)
sEMG-based robotic gripper control.

limitation to reach from one point to the other. Fig. 3(c) In
terms of total latency under each module of the pipeline, we
devised a meticulous calculation ‘crawler’ by navigating and
calculating the value through each system pipeline module
as shown in the flowchart of Fig. 3(c). The data acquisition
time of 55 ms is based on a 50 ms time window with 5 ms
of data processing. The wait time between iterations of 5 ms
was introduced by the software wait time of 1 ms and an
additional acquisition reading time that it took for the next
data window to be read. The byte conversion at most took 10
ms inclusive of it being a multi-dimensional byte array. For
our Wi-Fi speed, the data transfer, reception, and conversion
into a readable format take no more than 50 ms. Because all
the robot communication was established over ROS, it took
5 ms to send commands to the robot joints. It took 20 ms for
the robot to move in the simulation. Because the hardware
had its own movement limitations, it took 50 - 75 ms for the
robot to move from one position to the next assuming the
joint movement was less than 0.1 radians. Overall, for a 50
ms time window, it took 150 ms for the robot to move in the
simulation domain and 200 - 225 ms for the robot to move
in the hardware domain.

To demonstrate the latency enhancement on one of the co-
dependent ML modules, we performed an analysis specifi-
cally to show the time taken for training different machine
learning algorithms. In Fig. 4(a), we found that k-NN took
the least time while GP took the longest. As the number
of channels increased, NN-MLP and L-SVM’s training time
decreased, while for AB it clearly increased. Fig. 4(b) shows

the inference time which is the time required for a final
decision after an input feature vector is loaded into a trained
model for classification. As can be seen from the figure,
k-NN took the longest time for prediction, while NN-MLP
took the least inference time. As the number of channels
increased, inference time increased for GP and L-SVM. No
clear trend was observed for AB and k-NN. From these
results, NN-MLP stood out in terms of the low latency of
inference without having the lowest training time.

B. Data Processing and Intent Extraction outcome

Fig. 4(c) shows the accuracy percentage for 5 different
ML algorithms for 4-channel sEMG, with the performance
evaluated over a previously unseen test set of 3 minutes using
models trained on 9 minutes of training data. For 4-channel
data, NN-MLP outperformed other algorithms with a 98%
accuracy. GP performed the second best with an accuracy
of 97%. To have a low-latency system, it was important
to consider inference latency and accuracy percentage. NN-
MLP performed the best with a 4-channel latency of less
than 1 ms and an accuracy of 98% over the test set.

C. Performance Demonstration

Fig. 5 shows the different aspects of the performance
demonstration. Four different performance demonstrations
in form of a video have been attached to the paper. For
setting the basis for baseline comparison, a PlayStation 4
controller was used to send basic joint movement commands
to the robot arm. This established the basic proof of concept



Linux-only control pipeline setup. Then, the robot joints
were enacted in a low-latency fashion using the IMU values.
The IMU values were mapped to different joints of the
robotic arm and performed actuation. Next, using the power
spectrum density based total power thresholding approach,
the sEMG-based robot gripper control was achieved. Finally,
the IMU and sEMG-based simultaneous control of robot
joints and gripper was achieved with a total system latency
of 200 ms, allowing us to realize the potential of our
latency reduction construct for real-time use, and for enabling
applications ranging from basic pick-&-place to advanced
dexterous tasks.

IV. CONCLUSIONS

Human intervention in the digital space will undoubtedly
be the central topic of discussion in the transition toward
next-generation IoT, cybernetics, and 6G development. The
ability to augment our physical body to have the capability
to interact with the digital world seamlessly and accurately
would be the key to realizing the essential role humans
play in the future. To that end, we believe the collective
and transparent development of a robust system pipeline to
enable a control mechanism for the teleoperation of any end-
system interfaces will enhance our physical capabilities. The
development of this low-latency system pipeline moved us
closer to that goal, and it helps researchers and industry
professionals to develop remotely operated HMI platforms
capable of natural and seamless interaction.

ACKNOWLEDGMENT

The authors would like to thank the researchers in the
Artificial Intelligence Research Lab at Nokia Bell Labs for
their support.

REFERENCES

[1] Marcus K Weldon. The future X network: a Bell Labs perspective.
CRC press, 2016.

[2] Mingde Zheng, Michael S Crouch, and Michael S Eggleston. “Sur-
face Electromyography as a Natural Human-Machine Interface: A
Review”. In: IEEE Sensors Journal (2022).

[3] Keshav Bimbraw et al. “Towards Sonomyography-Based Real-Time
Control of Powered Prosthesis Grasp Synergies”. In: 2020 42nd An-
nual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC). IEEE. 2020, pp. 4753–4757.

[4] Keshav Bimbraw et al. “Prediction of Metacarpophalangeal joint
angles and Classification of Hand configurations based on Ultrasound
Imaging of the Forearm”. In: 2022 International Conference on
Robotics and Automation (ICRA). IEEE. 2022, pp. 91–97.

[5] Jingjing Guo et al. “Soft and stretchable polymeric optical
waveguide-based sensors for wearable and biomedical applications”.
In: Sensors 19.17 (2019), p. 3771.

[6] Samuel Wilson and Ravi Vaidyanathan. “Upper-limb prosthetic
control using wearable multichannel mechanomyography”. In: 2017
International Conference on Rehabilitation Robotics (ICORR). IEEE.
2017, pp. 1293–1298.

[7] Yang Zhang and Chris Harrison. “Tomo: Wearable, low-cost elec-
trical impedance tomography for hand gesture recognition”. In:
Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology. 2015, pp. 167–173.

[8] Dilip Chakravarthy Kavarthapu and Kaushik Mitra. “Hand Gesture
Sequence Recognition using Inertial Motion Units (IMUs)”. In: 2017
4th IAPR Asian Conference on Pattern Recognition (ACPR). IEEE.
2017, pp. 953–957.

[9] Carlos Bermejo and Pan Hui. “A survey on haptic technologies for
mobile augmented reality”. In: ACM Computing Surveys (CSUR)
54.9 (2021), pp. 1–35.

[10] Eshed Ohn-Bar and Mohan Manubhai Trivedi. “Hand gesture recog-
nition in real time for automotive interfaces: A multimodal vision-
based approach and evaluations”. In: IEEE transactions on intelligent
transportation systems 15.6 (2014), pp. 2368–2377.

[11] C Staub et al. “Human-computer interfaces for interaction with
surgical tools in robotic surgery”. In: 2012 4th IEEE RAS & EMBS
International Conference on Biomedical Robotics and Biomechatron-
ics (BioRob). IEEE. 2012, pp. 81–86.

[12] Ioannis Kostavelis and Antonios Gasteratos. “Robots in crisis man-
agement: A survey”. In: International Conference on Information
Systems for Crisis Response and Management in Mediterranean
Countries. Springer. 2017, pp. 43–56.

[13] Abolfazl Mohebbi. “Human-robot interaction in rehabilitation and
assistance: a review”. In: Current Robotics Reports 1.3 (2020),
pp. 131–144.

[14] Shrey Pareek et al. “MyoTrack: Tracking subject participation in
robotic rehabilitation using sEMG and IMU”. In: 2019 International
Symposium on Medical Robotics (ISMR). IEEE. 2019, pp. 1–7.

[15] Mylena McCoggle et al. “Applying Biosensors’ Electromyography
Signals through an Artificial Neural Network to Control a Small
Unmanned Aerial Vehicle”. In: International Journal of Electrical
and Computer Engineering 16.5 (2022), pp. 77–80.

[16] Daniele Esposito et al. “Biosignal-Based Human–Machine Interfaces
for Assistance and Rehabilitation: A Survey”. In: Sensors 21.20
(2021), p. 6863.

[17] Panagiotis K Artemiadis and Kostas J Kyriakopoulos. “EMG-based
control of a robot arm using low-dimensional embeddings”. In: IEEE
transactions on robotics 26.2 (2010), pp. 393–398.

[18] Liwei Cheng et al. “Robotic arm control system based on brain-
muscle mixed signals”. In: Biomedical Signal Processing and Con-
trol 77 (2022), p. 103754.

[19] Kaichi Fukano et al. “Deep Learning for Gesture Recognition based
on Surface EMG Data”. In: 2021 International Conference on
Advanced Mechatronic Systems (ICAMechS). IEEE. 2021, pp. 41–45.

[20] Dapeng Yang and Hong Liu. “An EMG-based deep learning ap-
proach for multi-DOF wrist movement decoding”. In: IEEE Trans-
actions on Industrial Electronics 69.7 (2021), pp. 7099–7108.

[21] Ulysse Côté Allard et al. “A convolutional neural network for
robotic arm guidance using sEMG based frequency-features”. In:
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2016, pp. 2464–2470.

[22] Anany Dwivedi et al. “Combining electromyography and fiducial
marker based tracking for intuitive telemanipulation with a robot
arm hand system”. In: 2019 28th IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN). IEEE.
2019, pp. 1–6.

[23] Minjie Chen and Honghai Liu. “Robot arm control method using
forearm EMG signals”. In: MATEC Web of Conferences. Vol. 309.
EDP Sciences. 2020, p. 04007.

[24] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”.
In: the Journal of machine Learning research 12 (2011), pp. 2825–
2830.

[25] 2022 iWorx Systems Inc. IX-RA-834 10+ Channel Recorder and
Stimulator. URL: https://iworx.com/products/data-
recorders/ix-ra-834-10-channel-recorder-and-
stimulator/?v=7516fd43adaa. (accessed: 08.29.2022).

[26] 2022 Trossenrobotics.com. PincherX 100 Robot Arm - X-Series
Robotic Arm. URL: https://www.trossenrobotics.com/
pincherx-100-robot-arm.aspx. (accessed: 08.29.2022).


